JMIR J医疗互联网服务 医学互联网研究杂志 1438 - 8871 卡塔尔世界杯8强波胆分析 加拿大多伦多 v24i12e41517 36417585 10.2196/41517 原始论文 原始论文 基于Dempster-Shafer理论的变形金刚组合对失眠相关推文的情感分析:covid -19大流行前和前后的回顾性研究 Eysenbach G 周润发 KamPui Bragazzi 尼古拉 Maghsoudi 博士学位 1 https://orcid.org/0000-0002-1883-0753 Nowakowski 莎拉 博士学位 1 https://orcid.org/0000-0003-2337-6337 Agrawal Ritwick 医学博士 1 https://orcid.org/0000-0002-7001-581X Sharafkhaneh 阿米尔 医学博士 1 https://orcid.org/0000-0002-7893-2946 库尼克 Mark E 医学博士 1 https://orcid.org/0000-0002-7349-5521 奈克 Aanand D 医学博士 2 https://orcid.org/0000-0001-6936-7984 博士学位 3. https://orcid.org/0000-0002-5274-4672 Razjouyan Javad 博士学位 1
医学系 贝勒医学院 贝勒广场1号 休斯顿,德克萨斯州,77030 美国 1 713 798 4951 javad.razjouyan@bcm.edu
https://orcid.org/0000-0003-1157-159X
医学系 贝勒医学院 休斯顿,德克萨斯州 美国 管理、政策和社区卫生部门 德克萨斯大学公共卫生学院 德克萨斯大学休斯顿健康科学中心 休斯顿,德克萨斯州 美国 生物医学信息学学院 德克萨斯大学休斯顿健康科学中心 休斯顿,德克萨斯州 美国 通讯作者:Javad Razjouyan javad.razjouyan@bcm.edu 12 2022 27 12 2022 24 12 e41517 28 7 2022 27 9 2022 20. 10 2022 15 11 2022 ©Arash Maghsoudi, Sara Nowakowski, Ritwick Agrawal, Amir Sharafkhaneh, Mark E Kunik, Aanand D Naik, Hua Xu, Javad Razjouyan。最初发表于《医疗互联网研究杂志》(//www.mybigtv.com), 2022年12月27日。 2022

这是一篇开放获取的文章,根据创作共用署名许可(https://creativecommons.org/licenses/by/4.0/)的条款发布,允许在任何媒介上无限制地使用、分发和复制,前提是正确引用最初发表在《医学互联网研究杂志》上的原创作品。必须包括完整的书目信息,//www.mybigtv.com/上的原始出版物的链接,以及此版权和许可信息。

背景

COVID-19大流行对人口健康造成了额外压力,可能导致睡眠行为的改变。

客观的

在这项研究中,我们假设使用自然语言处理来探索社交媒体将有助于评估COVID-19爆发后失眠患者的心理健康状况。

方法

我们设计了一项回顾性研究,使用了Twitter上的公共社交媒体内容。我们根据时间对与失眠相关的推文进行了分类,使用了以下两个区间:大流行前(2019年1月1日至2020年1月1日)和大流行周(2020年1月1日至2021年1月1日)区间。我们使用预训练的变压器结合Dempster-Shafer理论(DST)进行了情绪分析,将情绪的极性分为 积极的, 中性.我们在300条带注释的推文中验证了提议的管道。此外,我们使用逻辑回归进行了时间分析,以检查时间对Twitter用户失眠体验的影响。

结果

我们提取了包含这个词的305321条推文 失眠(大流行前的推文:n=139,561;大流行期间的推文:n=165,760)。预训练变压器的最佳组合(通过DST组合)的准确率为84%。通过使用这个管道,我们发现发布负面推文的几率(比值比[OR] 1.39, 95% CI 1.37-1.41; P<.001)在大流行期间的死亡率高于大流行前期间的死亡率。午夜后发布负面推文的可能性比午夜前高21% (OR 1.21, 95% CI 1.19-1.23; P<措施)。在大流行前,午夜后发布负面推文的几率比午夜前高出2% (OR 1.02, 95% CI 1.00-1.07; P(OR 1.43, 95% CI 1.40-1.46; P<.001)。

结论

提出的新颖的情感分析管道,通过DST结合预先训练的变压器,能够对与失眠相关的推文的情绪和情绪进行分类。在大流行期间,Twitter用户分享的关于失眠的负面推文多于大流行前。未来使用自然语言处理框架的研究可以评估关于其他类型的心理困扰、习惯改变、不活动导致的体重增加以及病毒感染对睡眠的影响的推文。

新型冠状病毒肺炎 冠状病毒 睡眠 推特 自然语言处理 情绪分析 变形金刚 Dempster-Shafer理论 睡觉 社交媒体 流感大流行 效果 病毒感染
介绍

COVID-19大流行给世界人口带来了过度压力[ 1 2]由于金融不稳定、失业、社会孤立和缺乏社会活动[ 3.].之前的研究证实了这种压力和睡眠障碍之间的联系[ 4- 6].此外,由于大流行,社交距离等限制措施导致某些数字行为增加,包括远程学习、网络会议、网络购物和社交媒体使用[ 7- 9].Twitter等社交媒体平台使用率的上升,为研究人员筛选公众行为提供了新的数据来源。

多项研究报告了COVID-19大流行对睡眠质量和心理健康的影响[ 10- 17].然而,这些研究仅限于小型数据库,通过问卷调查收集的数据,或两者兼而有之,而且缺乏对照组。例如,一项研究使用推特,根据192条推文报告了COVID-19大流行对孕妇睡眠质量的影响[ 18].社交媒体内容的情感分析是一项具有挑战性的任务,因为这些文本是非结构化的、简短的、非正式的和随意的;在听写和语法方面容易犯错误;并且是嘈杂的(表情符号,标签,url等);它们包含了歧义,比如一词多义[ 19].因此,使用人工智能和机器学习工具和技术可能有助于应对这些挑战。这些工具中有先进的分析自然语言处理(NLP)算法 变形金刚 19- 26].它们是对深度人工神经网络(循环神经网络)以前版本的语言建模和语言编码新提出的工具和扩展。

我们假设,使用NLP探索社交媒体可以帮助评估COVID-19大流行爆发后失眠患者的心理健康状况。心理健康是通过对推特公开数据使用NLP算法测量负面情绪来定义的。我们设计了一个基于预训练变压器架构的情感分析管道。利用Dempster-Shafer理论(DST;信念理论),以达到更高的准确性在认识的情绪。通过使用手动标注的数据集验证了该模型的准确性。随后,使用这一管道,我们分析并比较了在COVID-19大流行爆发前1年内(大流行前)和大流行期间1年内(大流行周)发布的与失眠相关的推文所固有的情绪。我们还从推文的发布时间方面比较了推文的情绪分析结果(即时间分析;午夜前和午夜后)。

方法 研究设计和数据收集

这项回顾性试点研究检查了在2019日历年(大流行前间隔)和2020日历年(大流行前后间隔)发布的推文。我们通过使用Twitter应用程序编程接口来收集公开的英语推文,该接口允许我们通过匹配关键字(例如, 失眠).这些推文根据发布日期和时间被分为两组:大流行前(2019年1月1日至2020年1月1日)和大流行周(2020年1月1日至2021年1月1日)。推文的入选标准是它们必须包含这个词 失眠而且要用英语。因此,所有的非英语推文和没有关键词的英语推文 失眠被排除在外( 图1).从包含的推文中提取的数据用于情绪分析和情绪注释。

STROBE(加强流行病学观察性研究的报告)图表。

抽样策略与注释

为了确定NLP算法性能测量所需的最小样本量,我们使用了精确功率计算方法[ 27].我们假设效应量为0.3,α为0.05,幂为80,5 df,需要143张纸币。然而,我们的注释团队随机选择了300个注释。

为了验证模型在预测推文情绪方面的性能,我们从提取的数据中随机选择了300条推文(根据 研究设计和数据收集部分),并手动将它们注释为积极、消极和中性类别。两名母语非英语、国际英语语言测试系统得分≥7分的人在推特上做了注释。第三位资深非英语母语人士担任最终法官,裁决分歧。我们用Cohen κ [ 28参数来衡量注释器之间的信度。

为推文开发情感分析管道 情感分析管道概述

我们设计了一个算法,它有以下三个步骤:预处理、处理和后处理。在预处理步骤中,我们通过删除特殊字符、url和标签来为处理步骤准备推文。该工艺步骤由2个单元组成。第一个单元使用多个模型进行情绪分类(即,积极、消极和中性)。第二个单元使用DST来组合几个模型的输出(即前一步的输出),以提供更准确的预测。最后,在后处理步骤中,我们量化了不同模型的情感分析性能。这些步骤将在以下部分和中进行更详细的讨论 图2

机器学习自然语言处理算法流水线。(A)我们分别计算每个变压器的性能。(B)结合变压器的输出,使用Dempster-Shafer理论做出最终决定。BERT:变压器的双向编码器表示;来自变压器预训练方法的稳健优化双向编码器表示。

预处理

从Twitter上抓取的原始数据包含不相关的属性(例如,用户名、url、转发、表情符号等)。预处理的目的是过滤不需要的文本内容,获得推文的相关部分。

过程

该过程步骤包括以下两个单元:基于nlp的情感分析分类器和用于组合分类器输出的DST。

第一单元:变形金刚

为了对推文进行情感分析,我们利用了变压器,这是新一代的深度人工神经网络(也称为 循环神经网络),用以进行机器翻译[ 29]并且由变压器单元相互堆叠而成。它们包括两个主要部分——编码器和解码器。编码器用于分类和推理,解码器主要用于语言建模;完整的架构用于机器翻译[ 30.].中显示了变压器的典型编码器 图3 多媒体附件1提供了变压器的简要理论)。

带有变压器的分类程序。

总共使用了5种不同的预训练的基于变压器的推文情感分析模型。拥抱脸AI社区提供的五个预训练模型如下:

从变压器提取双向编码器表示(BERT) [ 31],在斯坦福情感树库v2数据库上进行了微调[ 32].知识蒸馏[ 33 34]用于将BERT模型的大小减少40%,同时保留其97%的语言理解能力,并使其速度提高60%。

稳健优化BERT预训练方法[ 35用来进行情绪分析,该算法对大约5800万条推文进行了训练。基于BERT结构的RoBERTa模型;然而,它不仅在BERT训练过的数据上进行了预训练(BookCorpus [ 34 36]和英文维基百科;约33亿字),还有新闻数据和故事数据库[ 37].为了进行情绪分析,RoBERTa对5800万条推文进行了微调。

BERTweet [ 38],基于RoBERTa预训练程序进行训练,并对8.5亿条英语推文进行预训练。

基于bert的多语言模型,用于以下六种语言(英语、荷兰语、德语、法语、西班牙语和意大利语)的产品评论的情感分析。它通过使用星级(1星到5星之间)来预测评论的情绪;3颗星为中性,<3颗星为阴性,≥4颗星为阳性。

罗伯塔[ 35模型对来自不同文本来源的15个数据集进行了微调,以增强不同类型文本(评论、推文等)的泛化。

秒单位:DST

提高变压器模型的性能 第一单元:变形金刚section,我们使用夏令时[ 39 40),该系统能够综合不同专家的证据。我们让 Θ= { θ1 θ2 、…… θl }是可能假设的有限集。这个集合被称为 辨别框架,其功率集为2Θ.我们定义了一个函数, 米()。,称为 基本信念分配,它映射每个子集 η的值,取值范围为0 ~ 1,且满足以下条件:

米(ϕ)= 0 (1)

一个子集ζ η)>0是a吗 焦点元素.我们定义了另一个函数 信念函数 贝尔(。),它为Θ的每个非空子集ζ赋一个从0到1的值,定义如下:

给定上述函数,我们定义组合规则。我们假设了两个基本信念赋值,1(.)2(.),表示信念函数 贝尔1(.) 贝尔2(.),让 ηj和ζk成为重点元素 贝尔1 贝尔2 ,分别。1(.)2(.)然后结合起来,以获得大众所信奉的信仰 ϑ⊆Θ,按以下组合(即正交和公式):

分母对于归一化很重要。

后处理:模型评估

对本文中所讨论的模型进行性能评价 第一单元:变形金刚部分,评估指标-灵敏度、精度、准确性和 F1本研究使用了从混淆矩阵中提取的分数,并使用以下公式计算[ 41]:

统计分析

在进行情绪分析并将数据分为负面、正面和中性类别后,使用卡方检验和比值比(or)分析这些推文的类别特征(负面、正面和中性推文的数量)。 P显著性水平为<。05, 95% ci,和 z-统计报告。使用Python 3.8进行数据管理[ 42],使用SPSS version 27 (IBM Corporation)进行分析。

时序分析

我们还调查了与失眠相关的推文的年表,通过检查推文的总小时数。我们提取了带有负面情绪的推文的发布次数。每天的小时数被分为以下两个时间段:午夜前(下午1点到午夜)和午夜后(凌晨1点到中午)。我们计算了每个区间内负面推文的百分比,并使用逻辑回归分析来比较午夜前后发布负面推文的几率。

结果 推文的特点

我们检索到305321条包含这个词的推文 失眠并在大流行前和大流行前后发布。其中,139,561人在大流行前期间发布,165,760人(增加18.7%)在大流行周期间发布。在这两个时间段内,推文的长度(字数)大致相同(大流行前:平均26.3字,标准差为13.7字;周流行:平均29.3,标准差13.7字)。推文互动的数量,定义为点赞、转发和回复数量的总和,没有显著差异( P(大流行前:平均6.2,标准差171.8相互作用;大流行前后:平均5.4,标准差100.6相互作用)。

注释

在这两名评论者注释的300条推文中,167条(55.7%)被归为负面,102条(34%)被归为中性,31条(10.3%)被归为正面。评分者间信度达到0.55 (95% CI 0.44 ~ 0.69)。

情感分析管道性能

表1,我们报告了在300条注释推文中预训练的五个模型的准确性。模型1蒸馏bert -效果最好(80.3%)。在使用DST方法组合模型后,我们观察到组合模型1、2、3和5可以获得最高的性能(84%; 表1).

由于蒸馏BERT(模型1)显示了单模型分类的最佳性能,并且为了更好地理解DST如何提高管道的性能,我们分析了该模型的评估指标以及模型的最佳组合(即在 表1),在所有三项情绪指标( 表2).

用于分析300条注释推文的模型的性能比较。

模型 精度(%)
单独的模型
模型1(蒸馏BERT一个) [ 31 80.3
模型2(罗伯塔b) [ 35 52.7
Model 3 (BERTweetc) [ 38 53
模型四(bert -多语种)[ 35 49.3
模型5(微调RoBERTa) [ 35 45.3
基于Dempster-Shafer理论的组合模型[ 39 40
模型1+模型2+模型3 81
模型1+模型2+模型3+模型5 84
模型1+模型5 77.2
模型1+模型2+模型3+模型4+模型5 81.7

一个BERT:来自变压器的双向编码器表示[ 31].

b来自变压器预训练方法的鲁棒优化双向编码器表示[ 35].

cBERTweet是一种来自Transformers预训练方法模型的稳健优化的双向编码器表示,该模型经过8.5亿条英语推文的训练[ 38].

比较单个模型(从变压器提取的双向编码器表示)和基于Dempster-Shafer理论的组合模型在识别每个情感类别(积极、中性和消极)方面的性能。

情绪 灵敏度(%) 精度(%) F1分数 精度(%)
单独的模型一个 组合模型b 单独的模型 组合模型 单独的模型 组合模型 单独的模型 组合模型
92.8 93.4 77.9 81.7 84.7 87.1 81.3 84.6
中性 72.5 77.5 98.7 98.8 83.6 86.8 90.3 91.3
积极的 38.7 54.8 46.2 58.6 42.1 56.6 89 92

一个单个模型是从变压器中提取的双向编码器表示[ 31].

b组合模型是由transformer (BERT)的蒸馏双向编码器表示[ 31],稳健优化BERT预训练方法(RoBERTa) [ 35], BERTweet [ 38],并微调RoBERTa [ 35].

情绪分析

应用于所有推文的情绪分析的最佳组合模型的结果显示在 表3.我们发现,与大流行前时期(65,164/139,561,46.7%)相比,大流行周期发布负面推文的可能性更高(91,242/165,760,55%)。因此,我们发现在大流行期间发布正面推文的可能性(27,621/165,760,16.7%)低于大流行前期间(34,633/139,561,24.8%)。我们还观察到在大流行前后发布中立推文的可能性相同( 图4).我们报告,与大流行前的时间段相比,大流行期间发布负面推文的几率高出39% (OR, 1.39;95% ci, 1.37-1.41, P<措施; 表3).

大流行前(2019日历年)推文和大流行前后(2020日历年)推文的消极和积极特征。

微博人气 推文总数(N=305,321), N (%) 大流行前推文(n=139,561), n (%) 大流行期间推文(n=165,760), n (%) 大流行前vs大流行周
P价值 z统计 优势比(95% CI)
消极的推文 156406 (51.3) 65164 (46.7) 91242 (55) <措施 45.94 1.39 (1.37 - -1.41)
积极的推 62254 (20.4) 34633 (24.8) 27621 (16.7) <措施 55.402 0.60 (0.59 - -0.61)
中性的推文 86661 (28.3) 39764 (28.5) 46897 (28.3) 口径。 1.22 0.99 (0.97 - -1.00)

在大流行前和大流行周发布消极、积极和中性推文的可能性。* P<措施。

时序分析

午夜后发布负面推文的可能性高于午夜前(OR 1.21, 95% CI 1.19-1.23; P<措施; 图5A).从负面推文的小时分布来看,与午夜前相比,午夜后时段有增加的趋势( 图5B)大流行期间午夜前发布负面推文的几率比大流行前时期高15% (OR 1.15, 95% CI 1.12-1.18; 图5C),而在大流行期间,午夜后发布负面推文的几率高出60% (OR 1.60;95% ci 1.57-1.63; P<措施; 图5C).在大流行前时期,午夜后发布负面推文的几率比午夜前高出2% (OR 1.02, 95% CI 1.00-1.07; P= .008; 图5D);然而,在大流行周期,它们要高出43% (OR 1.43, 95% CI 1.40-1.46; P<措施; 图5D).对大流行前和大流行期间的推文情绪进行季度(3个月)分析的结果载于年的表S1和图S2 多媒体附件2

推文的时间分析。(A)午夜前(下午1点至午夜)和午夜后(凌晨1点至中午)发布的负面推文的百分比。(B)负面推文的每小时分布。(C)大流行前和大流行周期间午夜前(下午1点至午夜)和午夜后(凌晨1点至中午)发布负面推文的可能性比较。(D)大流行前和大流行周期间午夜前(下午1点至午夜)和午夜后(凌晨1点至中午)发布负面推文的可能性的比较。

讨论 主要研究结果

在这项回顾性队列研究中,我们表明NLP工具可以通过使用公开平台(如Twitter)上表达的情绪来监测人口健康,作为公众意识和认知的替代措施。我们观察到,COVID-19大流行与失眠相关的自我报告推文的变化呈负相关。我们设计了一种用于情感分析的新型NLP管道,该管道基于预训练的变压器组合(通过DST组合;即信仰理论)。通过使用这一基础(在手动注释的推文上得到验证),我们在大流行期间检测到的在推特上报告失眠的人的负面推文比大流行前检测到的负面推文更多。

首先,我们开发了一种新颖的基于机器学习的管道来分析情绪。为了验证模型的性能,我们手动注释了300条推文。κ分析表明,不同评分者的一致性为55%。这不是一个非常强烈的共识,这可能是由于情感分析任务固有的主观性造成的,在这种任务中,每个人都根据自己的观点为文本分配情感[ 43].接下来,使用这个带注释的数据库,我们分别验证了每个模型的性能,并分析了所有模型的性能;蒸馏BERT(模型1)效果最好,准确度为80.3%。此外,联合模型产生了最好的结果(准确率为84%)。值得注意的是,加入RoBERTa(模型2)和BERTweet(模型3)并没有提高太多的精度,但加入微调RoBERTa(模型5)使得精度提高了4%。虽然微调RoBERTa(模型5)的整体性能低于蒸馏BERT(模型1),但它在检测积极推文方面的准确率(71%)高于蒸馏BERT(模型1;精度:38.7%;混淆矩阵在图S1中找到 多媒体附件2).因此,与蒸馏BERT(模型1)相比,组合模型在检测正面推文方面具有更高的准确率(54.8%) 表1,可以推断,在组合中保留RoBERTa(模型2)和BERTweet(模型3)是必要的,因为蒸馏BERT(模型1)和微调RoBERTa(模型5)的组合效果更差(77.2%)。这可以解释为,虽然经过微调的RoBERTa(模型5)在识别积极推文方面表现更好,但在识别中性和消极推文方面表现不太理想;因此,它降低了整体精度。这表明了DST在结合模型和利用每个模型的优势来提高整体情绪分类方面的效率。

在开发了一个可靠的情绪分析管道之后,我们分析了推文的情绪。在大流行期间,我们观察到带有该关键字的推文数量显著增加 失眠 P< 001)。一种可能的解释是,社交互动从面对面的环境转移到了基于网络的环境,比如Twitter。推特的年度用户数量增长了33.8%,从2019年的1.38亿用户增长到2020年的1.86亿用户[ 44 45].我们还观察到,在疫情开始后,与失眠相关的推文总数有所上升。考虑到这一点,结合情绪分析的结果,我们认为这一峰值可能与负面推文的增加有关( 图4).根据 表3虽然与失眠相关的正面推文数量下降了8.1%,但这一数字被负面推文数量8.3%的飙升所掩盖;中立推文的数量没有显著变化(减少0.2%)。我们发现负面推文的数量显著增加( P<001)与以前发表的文献一致[ 46].政治等[ 47通过分析新冠疫情爆发前后发布的推文,显示在某些日期负面情绪有所增加。

Nota和Coles之前的一项研究[ 48研究表明,睡眠中断的人控制负面情绪的自上而下抑制过程减弱,经常进行重复的负面思考(反刍)。我们在研究中发现了同样的趋势;失眠症患者在夜间清醒且不受干扰时更容易陷入沉思( 图5B),表明一种晚上睡眠不好后的沮丧状态。这与从 图5A,这表明62.4%(190,521/305,321)的负面推文是在午夜之后产生的。

我们的研究表明,NLP工具可以用来监测人们对公共压力的态度,比如大流行造成的压力。决策者和公共卫生当局可受益于利用此类监测工具更好地为选民进行宣传[ 49].我们的研究被归类为信息流行病学研究,它提供了一个实时分析公众情绪的机会[ 50].NLP工具是分析和挖掘Twitter的强大工具,Twitter是软情报的来源。

限制

在本研究中,我们使用Twitter作为数据收集的来源。因此,我们可能已经排除了大量使用其他社交媒体平台(如Facebook)或论坛(如Reddit)来表达他们对失眠的看法的人群。未来的研究应该调查除了推特之外,其他社交媒体平台上的公开数据。此外,由于本研究基于推特,因此缺乏效度测量,没有使用问卷调查和自我报告测量。未来的一项研究可能会使用Twitter数据和个人、卫生专业人员、研究人员和非营利组织的自我报告措施,联合评估孕妇的需求,以及在COVID-19大流行期间可获得的支持和资源。

值得注意的是,在本作品中,只有关键词 失眠是用来抓取推文的。尽管同义词如 失眠我们只对临床术语感兴趣 失眠.一项收集更广泛的睡眠领域(即失眠之外)数据的研究将有助于进一步了解大流行的全面影响。此外,一些可能的混淆因素,如用户位置,并不是所有用户都可用;这些因素可能会阻碍地理位置对失眠感知的影响。

结论

在这项研究中,我们提出了一种新的NLP管道,该管道基于使用DST的变压器组合来预测文本数据中固有的情感。我们手动注释了300条tweet,并通过DST组合了各种transformer架构。这种组合可以提高情绪分析的准确性。通过对与失眠相关的推文使用这一管道,我们的研究显示了COVID-19大流行对个人在推特上报告失眠的经历的负面影响。为了调查在COVID-19大流行背景下推特用户报告的睡眠行为的变化,我们分析了大流行之前和期间(2019年和2020年)发布的关于失眠的推文。这项研究的一个优势是使用NLP和DST来识别关于失眠的推文并分析他们的情绪。未来,我们将基于Twitter和其他社交媒体平台,评估大流行期间和之后心理健康状态其他方面(如无聊、恐惧、厌恶、惊讶等)和生活方式改变(如睡眠时间、睡眠时间表、物质使用、身体活动和睡眠药物使用)对失眠症状的影响。

变压器的简单理论。

补充表格和数字。

缩写 伯特

来自变压器的双向编码器表示

DST

Dempster-Shafer理论

NLP

自然语言处理

优势比

罗伯塔

基于变压器预训练方法的稳健优化双向编码器表示

这项工作得到了美国国立卫生研究院(NIH)、国家心肺和血液研究所K25基金的支持(赠款1K25HL152006-01;首席研究员:JR)和来自NIH国家护理研究所的研究经费(资助R01NR018342;主要研究员:SN)。本研究使用了质量、有效性和安全创新中心(批准号CIN 13-413)的设施和资源。本文仅代表作者个人观点,并不代表美国政府、退伍军人事务部或贝勒医学院。

HX和德克萨斯大学休斯顿健康科学中心在Melax技术公司拥有与研究相关的财务利益。

de Figueiredo CS Sandre 个人电脑 葡萄牙 拼箱 Mazala-de-Oliveira T 达席尔瓦查加斯 l Raony 费雷拉 西文 Giestal-de-Araujo E 多斯桑托斯 AA Bomfim POS COVID-19大流行对儿童和青少年心理健康的影响:生物、环境和社会因素 神经精神药理学生物精神病学 2021 03 02 106 110171 10.1016 / j.pnpbp.2020.110171 33186638 s0278 - 5846 (20) 30487 - 5 PMC7657035 Lebrasseur 一个 Fortin-Bedard NgydF4y2Ba 口中的 J 雷蒙德 E Bussieres 埃尔 拉皮埃尔 NgydF4y2Ba Faieta J 文森特 C 杜谢恩 l Ouellet MC 盖格农 E Tourigny 一个 Lamontagne Routhier F COVID-19大流行对老年人的影响:快速回顾 JMIR老化 2021 04 12 4 2 e26474 10.2196/26474 33720839 v4i2e26474 PMC8043147 Elbogen 海尔哥哥 拉尼尔 艾特 SM 瓦格纳 人力资源 J COVID-19大流行期间的自杀意念和自残想法:与COVID-19相关的压力、社会隔离和经济压力的作用 抑制焦虑 2021 05 05 38 7 739 748 10.1002 / da.23162 33949747 PMC8239640 Cellini NgydF4y2Ba Canale NgydF4y2Ba Mioni G 科斯塔 年代 意大利COVID-19封锁期间睡眠模式、时间感和数字媒体使用的变化 J Sleep Res 2020 08 29 4 e13074 10.1111 / jsr.13074 32410272 PMC7235482 Partinen Bjorvatn B Holzinger B F Penzel T 艾斯皮 CA 莫林 厘米 ICOSS-collaboration集团 2019冠状病毒病(COVID-19)大流行期间的睡眠和昼夜节律问题:国际COVID-19睡眠研究(ICOSS) J Sleep Res 2021 02 30. 1 e13206 10.1111 / jsr.13206 33179820 Partinen Kronholm E Chokroverty 年代 流行病学:睡眠医学的原理和应用 睡眠障碍医学:基础科学,技术考虑和临床方面 2017 纽约州纽约 施普林格 485 521 戈埃尔 一个 古普塔 l COVID-19时代的社交媒体 临床风湿醇 2020 09 26 6 220 223 10.1097 / RHU.0000000000001508 32852927 00124743-202009000-00003 PMC7437428 Feldkamp J Hovestadt C 莱克尔 J 里希特 J 云达 K 抖音的崛起:新冠肺炎期间社交媒体平台的演变 Covid-19的数字化应对:大流行爆发期间的数字创新、转型和创业 2021 可汗、瑞士 施普林格 73 85 考利 钢筋混凝土 Bushnik T Langlois K COVID-19大流行期间的锻炼和屏幕时间 健康的代表 2020 07 15 31 6 3. 11 10.25318 / 82 - 003 - x202000600001 - eng 32672923 82 - 003 x202000600001 贝克 F 分类帐 D Fressard l Peretti-Watel P 教堂司事 P Coconel集团 在人群水平上,Covid-19健康危机和封锁与大量睡眠投诉和催眠摄取有关 J Sleep Res 2021 02 30. 1 e13119 10.1111 / jsr.13119 32596936 PMC7361195 德阿泽维多巴罗斯 MB 秘鲁首都利马 毫克 马耳他 直流 Szwarcwald CL 德代理 RCS 罗梅罗 D 德·索萨Júnior 复审委员会 代理 马查多 Damacena GN 戈麦斯 CS de Oliveira Werneck 一个 达席尔瓦 组成 德碧娜 MDF 格雷西 R 报告COVID-19大流行期间巴西成年人的悲伤/抑郁、紧张/焦虑和睡眠问题 沙特流行病学 2020 29 4 e2020427 10.1590 / s1679 - 49742020000400018 32844918 s2237 - 96222020000400311 SJ R XJ LG JC 金桥 JX 2019冠状病毒大流行期间中国青少年和年轻人的睡眠问题 睡眠医学 2020 10 74 39 47 10.1016 / j.sleep.2020.06.001 32836185 s1389 - 9457 (20) 30255 - 0 PMC7274988 Idrissi AJ Lamkaddem 一个 Benouajjit 一个 El Bouaazzaoui MB El Houari F Alami Labyad 年代 Chahidi 一个 Benjelloun Rabhi 年代 Kissani NgydF4y2Ba Zarhbouch B Ouazzani R Kadiri F Alouane R Elbiaze Boujraf 年代 埃尔托钵僧 年代 Souirti Z 摩洛哥COVID-19大流行和封锁期间的睡眠质量和心理健康 睡眠医学 2020 10 74 248 253 10.1016 / j.sleep.2020.07.045 32862008 s1389 - 9457 (20) 30361 - 0 PMC7422815 斯帕索斯 l Prazeres F 特谢拉 一个 马丁斯 C COVID-19大流行对心理健康的影响:葡萄牙和巴西的横断面研究 国际环境与公共卫生 2020 09 17 17 18 6794 10.3390 / ijerph17186794 32957702 ijerph17186794 PMC7557976 Mautong H Gallardo-Rumbea 晶澳 Alvarado-Villa 通用电气 Fernandez-Cadena JC Andrade-Molina D Orellana-Roman CE Cherrez-Ojeda 评估因COVID-19疫情暴发而处于社会隔离期间厄瓜多尔普通人群的抑郁、焦虑和压力水平:一项横断面研究 BMC精神病学 2021 04 28 21 1 212 10.1186 / s12888 - 021 - 03214 - 1 33910550 10.1186 / s12888 - 021 - 03214 - 1 PMC8080088 Gualano 先生 Lo莫罗 G Voglino G 伯特 F Siliquini R 意大利Covid-19封锁对心理健康和睡眠障碍的影响 国际环境与公共卫生 2020 07 02 17 13 4779 10.3390 / ijerph17134779 32630821 ijerph17134779 PMC7369943 Alkhamees AA Alrashed SA Alzunaydi AA Almohimeed 作为 Aljohani 女士 COVID-19大流行对沙特阿拉伯普通民众的心理影响 压缩机精神病学 2020 10 102 152192 10.1016 / j.comppsych.2020.152192 32688022 s0010 - 440 x (20) 30034 - 1 PMC7354380 托尔伯特 J 少见 V Konkle 感觉空虚:推特数据分析显示,在COVID-19大流行期间,孕妇缺乏隔离支持和睡眠困难 国际环境与公共卫生 2021 01 06 18 2 393 10.3390 / ijerph18020393 33419145 ijerph18020393 PMC7825552 乔杜里 接下来的 Javed Y Kulsoom F Mehmood Z Shoaib U 上海 大选前后情绪分析:2020年美国大选推特数据 电子(巴塞尔) 2021 08 27 10 17 2082 10.3390 / electronics10172082 J 年代 H 用于多模态情感分析的具有时间挤压融合的单模态增强变压器 IEEE信号处理规程 2021 05 07 28 992 996 10.1109 / lsp.2021.3078074 贾利勒 Z Abbasi 一个 Javed 基于“增大化现实”技术 MB Hasanat 尼古拉斯 马利克 公里 Saudagar AKJ 使用最先进的机器学习和深度学习技术进行COVID-19相关情绪分析 前线公共卫生 2022 01 14 9 812735 10.3389 / fpubh.2021.812735 35096755 PMC8795663 J X 基于变压器记忆网络的网络评论情感分析 IEEE访问 2019 12 02 7 179942 179953 10.1109 / access.2019.2957192 纳西姆 U Razzak Khushi 埃克伦 PW J COVIDSenti:用于COVID-19情绪分析的大规模基准推特数据集 IEEE跨计算Soc系统 2021 01 29 8 4 1003 1015 10.1109 / TCSS.2021.3051189 35783149 PMC8545013 纳西姆 U Razzak Musial K 伊姆兰 基于Transformer的深度智能上下文嵌入推特情感分析 未来通用计算系统 2020 12 113 58 69 10.1016 / j.future.2020.06.050 苏萨 毫克 Sakiyama K de Souza Rodrigues l 莫拉 PH值 费尔南德斯 松原 BERT用于股票市场情绪分析 2020 2019 IEEE第31届人工智能工具国际会议(ICTAI) 2019年11月4日至6日 波特兰,或 10.1109 / ictai.2019.00231 T K 周润发 KP COVID-19感知:基于BERT模型的中国社交媒体负面情绪分析 IEEE访问 2020 07 28 8 138162 138169 10.1109 / ACCESS.2020.3012595 34812342 PMC8545339 H 使用G* power软件进行样本量测定和功率分析 教育评估卫生教授 2021 18 17 10.3352 / jeehp.2021.18.17 34325496 jeehp.2021.18.17 PMC8441096 科恩 J 名义比例尺的一致系数 Meas 1960 20. 1 37 46 10.1177 / 001316446002000104 Vaswani 一个 Shazeer NgydF4y2Ba Parmar NgydF4y2Ba Uszkoreit J 琼斯 l 戈麦斯 一个 凯撒 Ł Polosukhin 注意力就是你所需的一切 2017 第31届神经信息处理系统国际会议 2017年12月4日至9日 加州长滩 6000 6010 泰河 Y Dehghani Bahri D 麦茨勒 D 高效变压器:综述 arXiv 预印本于2020年9月14日在线发布。 Devlin J 兆瓦 K Toutanova K Bert:深度双向转换器的预训练,用于语言理解 arXiv 预印本于2018年10月11日在线发布。 Socher R Perelygin 一个 J 壮族 J 曼宁 CD Ng 一个 Potts C 情感树库语义组合的递归深度模型 2013 2013年自然语言处理经验方法会议 2013年10月18日至21日 西雅图,华盛顿州 1631 1642 辛顿 G Vinyals O 迪安 J 在神经网络中提炼知识 arXiv 预印本于2015年3月9日在线发布。 Buciluǎ C 卡鲁阿纳 R Niculescu-Mizil 一个 模型的压缩 2006 08 KDD06:第十二届ACM SIGKDD知识发现和数据挖掘国际会议 2006年8月20日至23日 费城,宾夕法尼亚州 535 541 10.1145/1150402.1150464 Y 奥特 Goyal NgydF4y2Ba J Joshi D 莱维 O 刘易斯 Zettlemoyer l Stoyanov V RoBERTa:一种稳健优化的BERT预训练方法 arXiv 预印本于2019年7月26日在线发布。 Y Kiros R 泽梅尔 R Salakhutdinov R Urtasun R Torralba 一个 费德勒 年代 对齐书籍和电影:通过观看电影和阅读书籍来实现故事式的视觉解释 2016 2015 IEEE计算机视觉国际会议(ICCV) 2015年12月7日至13日 圣地亚哥,智利 10.1109 / iccv.2015.11 TH QV 一种简单的常识推理方法 arXiv 预印本于2018年6月7日在线发布。 DQ Vu T BERTweet:一个预先训练的英语推文语言模型 arXiv 预印本于2020年10月5日在线发布。 法官 美联社 由多值映射引起的上、低概率 数理统计年鉴 1967 04 38 2 325 339 10.1214 /中耳炎/ 1177698950 沙佛 G 《证据的数学理论 1976 普林斯顿,纽约 普林斯顿大学出版社 Razjouyan J Freytag J Dindo l 基弗 l 奥多姆 E Halaszynski J 席尔瓦 JW 奈克 广告 使用电子健康记录的自然语言处理测量患者优先级一致护理的采用:模型的开发和验证 JMIR Med Inform 2021 02 19 9 2 e18756 10.2196/18756 33605893 v9i2e18756 PMC7935648 Van Rossum G 德雷克 FL Python/C Api手册- Python 3:(Python文档手册第4部分) 2009 斯科特谷,加利福尼亚州 CreateSpace Wearne T Osborne-Crowley K 罗森博格 H Dethier 麦当劳 年代 情绪识别依赖于主观情绪体验,而不是面部表情:创伤性脑损伤的证据 大脑Inj 2018 10 08 33 1 12 22 10.1080 / 02699052.2018.1531300 30296178 伊克巴尔 推特收入和使用统计数据(2022年) 应用业务 2022-11-24 https://www.businessofapps.com/data/twitter-statistics/ 哈曼 国家领导人在COVID-19大流行期间使用Twitter及其对公众的影响 Heliyon 2020 11 19 6 11 e05540 10.1016 / j.heliyon.2020.e05540 33294685 s2405 - 8440 (20) 32383 - 5 PMC7695954 Chandrasekaran R 梅塔 V Valkunde T 工程 E 关于COVID-19大流行的推文主题、趋势和情绪:时间信息监测研究 J医疗互联网服务 2020 10 23 22 10 e22624 10.2196/22624 33006937 v22i10e22624 PMC7588259 politi 皮质 G Kopsacheilis 一个 Nikolaidou 一个 Papaioannou P 捕捉covid -19大流行前和中期的推特消极情绪:伦敦公共交通系统上的LDA应用 可持续性 2021 12 02 13 23 13356 10.3390 / su132313356 背板 晶澳 芸苔属植物 较短的睡眠时间和较长的睡眠开始潜伏期与难以将注意力从消极情绪图像中分离有关 行为学研究精神病学 2018 03 58 114 122 10.1016 / j.jbtep.2017.10.003 29111422 s0005 - 7916 (17) 30062 - 9 MH Y 分析推特数据,评估人们对COVID-19时代公共卫生政策和事件的态度 国际环境与公共卫生 2021 06 10 18 12 6272 10.3390 / ijerph18126272 34200576 ijerph18126272 PMC8296042 马歇尔 C 蓝一 K 绿色 R 威尔金斯 GC 皮尔森 F 克雷格 D 使用自然语言处理探索COVID-19大流行期间英国推文中的心理健康见解:信息流行病学研究 JMIR Infodemiology 2022 03 31 2 1 e32449 10.2196/32449 36406146 v2i1e32449 PMC9642841
Baidu
map