JMI JMIR Med Inform JMIR医学信息学 2291 - 9694 卡塔尔世界杯8强波胆分析 加拿大多伦多 v10i12e38161 36538363 10.2196/38161 原始论文 原始论文 基于情感的自然语言处理提高谵妄识别的准确性:混合方法研究 田勇 Afshar 马吉德 卡里尼 费德里科• 博士学位 1 2 https://orcid.org/0000-0003-4016-4096 Yilun MSc 1 https://orcid.org/0000-0002-0682-0961 Chignell 马克 博士学位 1
机械与工业工程系“, 多伦多大学 八恒大厦8171A室 圣乔治道40号 多伦多,ON, M5S 2E4 加拿大 1 6473898951 chignel@mie.utoronto.ca
https://orcid.org/0000-0001-8120-6905
Baizun MSc 1 https://orcid.org/0000-0001-6204-7814 希恩 凯萨琳一 理学硕士,医学博士,博士 3. 4 https://orcid.org/0000-0002-8700-0809 •拉扎克 法赫德 硕士,博士 3. 5 https://orcid.org/0000-0001-9195-7286 阿莫勒 硕士,博士 3. 5 https://orcid.org/0000-0001-6857-931X
机械与工业工程系“, 多伦多大学 在多伦多 加拿大 计算机科学系 德州州立大学 圣马科斯,德克萨斯州 美国 GEMINI -普通医学住院病人计划 多伦多联合健康 在多伦多 加拿大 精神科 多伦多大学 在多伦多 加拿大 医学院和卫生政策、管理和评估研究所 多伦多大学 在多伦多 加拿大 通讯作者:Mark Chignell chignel@mie.utoronto.ca 12 2022 20. 12 2022 10 12 e38161 21 3. 2022 27 6 2022 22 8 2022 19 9 2022 ©Lu Wang, Yilun Zhang, Mark Chignell, baizan, Kathleen A Sheehan, Fahad Razak, Amol Verma。最初发表在JMIR医学信息学(https://medinform.www.mybigtv.com), 20.12.2022。 2022

这是一篇开放获取的文章,根据创作共用署名许可协议(https://creativecommons.org/licenses/by/4.0/)的条款发布,允许在任何媒介上不受限制地使用、分发和复制,前提是正确引用了首次发表在JMIR医学信息学上的原创作品。必须包括完整的书目信息,https://medinform.www.mybigtv.com/上的原始出版物的链接,以及此版权和许可信息。

背景

谵妄是一种急性神经认知障碍,影响多达一半的老年住院病人,可导致痴呆、住院时间延长、医疗费用增加和死亡。虽然谵妄可以预防和治疗,但很难识别和预测。

客观的

这项研究旨在改进机器学习模型,通过使用情感分析的自然语言处理(NLP)技术(在这种情况下,一种识别对谵妄诊断的情绪的特征),回顾性地识别住院期间谵妄的存在(例如,测量谵妄预防干预的有效性)。

方法

利用加拿大医院数据和分析网络“全科医学住院倡议”的数据,对多伦多地区6家医院近4000例入院病例进行了详细的人工审查。此外,25.74%(994/3862)的合格住院患者被标记为谵妄。使用从这项研究中收集的数据集,我们开发了机器学习模型,有和没有应用于诊断成像报告的NLP方法的好处,我们提出了一个问题“NLP能否提高机器学习对谵妄的识别?”

结果

在符合条件的3862例住院患者中,994例(25.74%)被标记为谵妄。模型的鉴定和校准令人满意。采用NLP的主模型在独立测试数据集中的准确率和受试者工作特征曲线下面积分别为0.807和0.930。无NLP的主模型在独立测试数据集中的准确率和受试者工作特征曲线下面积分别为0.811和0.869。在实验中使用的5年期间,模型性能也被发现是稳定的,对可能的未来抵抗试验集的识别并不比对回顾性抵抗试验集的识别差。

结论

我们的机器学习模型包含了NLP(即医学图像描述文本挖掘中的情感分析),使用情感分析对谵妄进行了有效识别,比没有NLP的模型提供了显著的额外好处。

精神错乱诊断 数据挖掘 医学图像描述 文本挖掘与分析 情绪分析
简介 背景

谵妄被描述为“急性脑衰竭”,被认为是一种“医疗紧急情况”和“无声的流行病”[ 1 2].它是内科病人和住院病人中最常见的神经精神疾病[ 3.].在加拿大、美国、英国和澳大利亚,它也被公认为护理质量指标[ 4- 8].谵妄的症状对病人和照顾者来说都是严重和痛苦的[ 9 10]是诱发因素和诱发因素之间复杂相互作用的结果[ 9].精神错乱患者在医院死亡或需要安置在养老院的可能性是其他患者的两倍多,影响到50%的老年住院患者[ 11- 14].谵妄的长期影响是严重的,因为它与恶化的认知障碍和偶发痴呆有关[ 14- 17].谵妄患者住院时间更长,再入院率增加,医疗费用增加一倍多。Leslie等人的研究[ 18]表明与谵妄相关的1年医疗费用为每位患者16,303美元至64,421美元。最近的估计表明,它占美国每年医疗保健支出的1830亿美元[ 18 19].高达40%的谵妄病例是可以预防的,许多剩余的谵妄病例可以通过实施标准化的多成分方案得到更好的管理[ 19 20.].这些项目可为每位患者节省高达3800美元的住院费用,在谵妄发作后的一年内,每人每年可节省16,000美元[ 19 20.].然而,在常规临床护理中,存在显著的实践差距,大多数医院没有始终如一地实施最佳实践[ 19- 21].

使用谵妄作为质量指标的一个关键障碍是缺乏一种可靠和可扩展的方法来早期识别谵妄病例。临床医生不善于使用临床格式塔识别谵妄,其识别率在16% - 35%之间[ 22].混淆评定法[ 23]是众多谵妄筛查工具之一,但使用它需要时间和训练;因此,CAM等工具的使用相对较少。例如,Hogan等人[ 23]发现只有28%的以老年为重点的急诊科使用谵妄筛查工具。

由于谵妄很难当场识别,人们对谵妄发生后的识别很感兴趣,无论是通过行政图表复查(即寻找证据因素,如使用抗精神病药物)还是通过回顾性识别。理想情况下,谵妄的识别将是前瞻性的,证明了一种方法,以确定那些在发展谵妄的最高风险,针对这些个体的谵妄识别干预。然而,谵妄的回顾性鉴定也可以用于确定谵妄率,这可以作为质量指标和旨在改善质量的干预措施的有效性措施。

许多预测谵妄的模型都是基于已知的诱发和诱发危险因素而开发的[ 18].然而,目前的模型有局限性[ 24].首先,它们依赖于未作为临床护理一部分常规收集的变量,如先前存在的认知障碍和功能状态,这使得它们难以扩展[ 25].例如,英国国家临床卓越研究所谵妄风险识别模型要求在电子记录中提供认知障碍和感觉障碍的信息[ 26- 28].其次,对谵妄识别模型的系统回顾强调了它们的识别不足,以及关于模型如何验证的许多方法学问题,如其准确性和预测能力不足。该综述的结论是,模型的表现可能被夸大了[ 26].第三,先前谵妄的风险识别模型倾向于使用有限的一组机器学习方法[ 7 29- 33],并倾向于忽略文本数据[ 34].

随着诸如本研究中使用的电子临床数据存储库的日益可用,数据挖掘和机器学习等方法可以补充或取代传统的统计模型[ 27 32 34- 38].医学文本挖掘需要自然语言处理(NLP)方法来提取有价值的医疗信息,并为识别模型导出可计算的变量[ 39].NLP已被证明在从医学文本中提取信息为可支持临床决策的计算有用形式方面非常有效[ 40- 47].

情感分析使用机器学习和NLP分析作者的情感文本(例如,积极与消极,或者在我们的案例中,谵妄与非谵妄相关的文本)[ 46- 48].我们采用情绪分析来预测有关谵妄状态的情绪。因此,在随后的分析中,积极(有谵妄)和消极(没有谵妄)状态是一个新的(二元)情绪特征。使用这种基于谵妄的文本情感分析,我们创建了一个文本派生的特征,用于估计每次入院的谵妄状态。

客观的

我们项目的总体研究目标是回顾性地识别住院期间的谵妄病例,使用从入院到出院的所有可用数据,以估计谵妄率,从而量化与谵妄相关的质量改善干预措施的效果。在本研究中,我们将重点放在方法学目标上,即证明将NLP方法纳入谵妄回顾性鉴定的价值。

方法 数据源 概述

全科医学住院病人计划(GEMINI)是加拿大安大略省的一个多机构研究合作项目。GEMINI开发了收集和标准化医院电子临床数据的基础设施和方法。本研究的数据来自6家医院(圣迈克尔医院、多伦多总医院、多伦多西部医院、Trillium Credit Valley医院、Trillium Mississauga医院和Sunnybrook医院)。GEMINI正在成为临床研究和质量测量的丰富资源[ 4 49- 52].严格的内部验证流程证明,关键数据类型的准确性为98%至100% [ 50].

在GEMINI中,管理健康数据与从医院信息系统中提取的临床数据( 表1).

数据包含在普通医学住院病人倡议项目。

数据类型 病人的细节 医生和房间 实验室 成像 药店 临床文档 微生物学
选择变量

人口统计资料

并发症

诊断

程序

成本

医生详细信息

转移细节

生物化学

血液学

输血

放射学家诊断和介入成像报告

药物治疗

剂量

路线

医生命令

生命体征

生物

抗菌药物敏感性

收集细节

管理数据

从医院收集患者水平的特征,并报告给加拿大健康信息出院摘要数据库和国家门诊护理报告系统。诊断数据和干预措施采用增编的《加拿大疾病和相关健康问题国际统计分类》和《加拿大健康干预分类》进行编码。

临床数据

来自GEMINI电子信息系统的数据包括实验室检测结果(生物化学、血液学和微生物学)、输血、住院药物、生命体征、成像报告和病房转移。通过统计质量控制流程和直接数据验证,确保了这些数据关键要素的质量[ 53].GEMINI数据提取方法允许访问大量理想的文本处理方法的数据,包括放射科医生的诊断成像报告。

本研究报告的谵妄病例是由训练有素的医疗专业人员使用经过验证的方法通过手工病历审查确定的[ 54].这种方法主要依赖于通过对医生、护士和跨专业文献的详细回顾来识别谵妄或其众多的同义词(如混乱)。与临床评估相比,该方法具有良好的敏感性(74%)和特异性(83%),被认为是鉴别谵妄的合适金标准,用于研究和提高质量[ 54].

我们使用了来自GEMINI数据集的11个数据文件,其中包含3862个根据谵妄状态手动标记的入院记录。数据文件包括临床和管理数据,如中所述 表1.然而,标记谵妄是高度劳动密集型的,训练有素的审查员回答以下问题作为过程的一部分:“从急性混淆状态(例如,谵妄,精神状态改变,注意力不集中,定向障碍,幻觉,激动,不当行为等)的图表中是否有任何证据?”因此,尽管图表回顾标签可以用来训练更有效的机器学习方法,但它们太昂贵了,无法根据住院期间是否经历过谵妄来标记所有老年患者。

在我们的研究中,我们使用了图表回顾法[ 51]以标记我们数据集中关于谵妄的病例子集。评分者之间的可靠性是通过让第二个抽象者盲审5%的图表来评估的,达到90%的评分者之间的可靠性。这导致了在本文报告的分析中使用的3862例住院病例。数据文件包括临床和管理数据,如中所述 表1

伦理批准

多伦多学术健康科学网络的研究伦理委员会(REB)批准了GEMINI研究(REB参考编号15-087)。REB批准的延期由多伦多统一健康REB(参考编号15-087)发布。Trillium Health Partners获得了单独的REB批准。

这篇论文也是GEMINI子研究的一部分,名为“使用人工智能识别和预测住院医疗患者中的谵妄”,该研究已获得多伦多大学REB的批准(批准编号为38377)。

数据预处理

GEMINI中包含的数据表被合并为一个适合进行机器学习的表工作表。在此之前,从数据表中选择合并相关变量,如下小节所述。

实验室测试

本数据文件共纳入45项医学检测,如血尿素氮、平均细胞体积、高敏肌钙蛋白等。请注意,在每次入院时,并非所有45项医学检查都进行了,尽管有些检查在同一患者中进行了多次。在原始实验室检测数据文件中,每个医学检测实例对应一个单独的记录。我们将实验室测试表转换为每次入场的单行表,其中每列代表不同的测试。由于患者通常接受的是可用测试的一小部分,因此有许多空细胞(即稀疏性),并且一些细胞必须代表同一测试的多个实例。为了解决稀疏变量的问题,我们将它们转换为1或0个标志变量(1表示已执行测试,0表示未执行测试)。对于经常进行的检查,我们记录了每次入院检查结果的最小值、最大值、中值和频率。如果在50%的录取中至少进行了5次测试,我们计算每次录取的测试结果的SD作为额外的汇总测量。

病人的诊断

我们首先将《国际疾病分类第十版》(ICD-10)映射到临床分类软件(CCS)的出院诊断代码,这个过程我们之前描述过[ 4 49 50 55].我们使用所有可用的ICD-10代码,包括那些回顾性分配的代码,这不应被视为数据泄漏,而是利用所有可用的数据来服务于使用。医生团队确定了240个可能与谵妄相关的独特CCS代码。然后,我们为这240个独特的CCS代码创建了标志变量(布尔值),以表明入院是否涉及每种诊断。请注意,我们没有为ICD-10代码创建标志变量,因为这将极大地增加分析中的特征数量。

临床干预措施

这套特征涵盖了一系列临床干预措施,包括按照加拿大健康干预措施分类编码的外科和内窥镜手术。使用两个变量记录每次入院的干预次数。第一个衍生变量是每次入院进行的干预次数(包括同一干预的重复)。第二个衍生变量计算每次入院的独特干预次数。数据文件中没有使用其他有关干预措施的信息。

空间转移

我们计算了每次入院的房间转移数量,这是这个数据表中使用的唯一变量。

临床风险评分

我们使用了以下临床评分,这些评分是疾病严重程度和患者不良结局风险的标志: 56]、实验室急性生理评分[ 57和肾脏疾病:改善整体预后急性肾损伤分期[ 58].

急诊分诊评分

我们对表示急诊分诊时患者病情严重程度的特征应用了单热编码,分诊采用5分量表,由加拿大分诊和敏锐度量表衡量[ 59].

行政入职与离职资料

我们对表示患者根据住院、出院和转院系统入院和出院的医疗服务类型的特征应用one-hot编码。我们还计算了住院时间,并得出了一个特征来表明患者出院到哪里。

药物

这个文件每次有1行,按原样使用。

特别护理组

只有320名入院患者有特殊护理单元信息,因此我们创建了一个带有二进制编码的标记变量,以表明患者在入院期间是否在特殊护理单元接受过护理。

输血

该医疗数据表仅包含429例包含输血信息的入院病例;因此,我们用二进制编码创建了1列来表示它的存在或不存在。

放射医师诊断影像报告的NLP

医学成像数据表包含磁共振图像和计算机断层扫描的文本描述,这些图像经过过滤,仅包括脑或头部成像。与实验室测试数据文件类似,每次成像测试有1行;因此,每次准入可能有多行。如果每次入场都有多个测试,则我们首先将测试中的文本描述连接起来,然后通过清理、标记和向量化对该文件使用文本挖掘。

用于机器学习的数据集代表了从多个来源集成的数据,例如,实验室结果、药物、放射科医生报告和管理数据。我们采用情绪分析来预测有关谵妄状态的情绪。因此,积极(有谵妄)和消极(没有谵妄)状态是一个二元情感,然后在随后的分析中形成了一个新特征。使用这种基于谵妄的文本情感分析,我们创建了一个文本派生的特征,用于估计每次入院的谵妄状态。

在情感分析之前进行了初步的文本分析。文本清理包括大写字母转换、停止词删除、标点符号删除、词内分隔、标记化和词元化,并且使用 nltk 39), sklearn 60)包。接下来,词频-逆文档频率,字数表示,和 n-gram方法用于文本向量化。

然后训练总共8个基线机器学习分类模型进行情感分析,分别是逻辑回归、朴素贝叶斯、支持向量机(SVM)、决策树、随机森林、梯度增强、 XGboost,以及多层感知器。超参数调优应用 RandomSearchCV(即,通过参数设置的交叉验证搜索优化超参数的随机搜索)[ 60].

最后选择梯度增强作为情感分析方法 F1-得分在8个分类中最高。最终的模型是一个随机梯度提升(0.8子样本),使用200个估计量,以Friedman均方误差为标准,最大深度为3。然后,我们使用所选的梯度增强模型,从文本中医学图像的描述中创建一个具有预测二值情感的特征。

我们将这个新功能与10个实验室测试和电子健康记录数据集成在一起,创建了一个完整的数据文件,用于训练和测试机器学习识别模型。

模型构建与培训

共实施了12种具有预测谵妄状态任务的监督分类算法。涵盖大多数类型机器学习模型的12种机器学习算法如下:

集成机器学习模型:梯度增强分类器、AdaBoost分类器、随机森林和投票分类器软件

非参数机器学习模型:k近邻和决策树

线性参数机器学习模型:逻辑回归、线性支持向量机和线性判别分析

非线性参数机器学习模型:二次判别分析,神经网络:深度学习中的多层感知器分类器

基于贝叶斯的机器学习模型:高斯朴素贝叶斯。

为了建模,我们将集成的完整数据分为2部分,一个训练集和一个测试集。如 图1,数据跨度5年,从2010年4月1日到2015年3月31日。我们将这段时间分为10个6个月的时间段。我们将前9段,即2010年4月1日至2014年9月30日作为训练集。过去6个月期间,即2014年10月1日至2015年3月1日,被用作抵抗数据(即测试集),以估计相对于构建模型所使用的数据,模型未来可能的性能。这使我们能够评估数据中是否存在任何非平稳性,这将影响我们基于现有数据开发的模型来预测未来谵妄的能力。

在滚动的基础上进行模型训练和测试的数据分割。TS:时间段。

在训练集中,我们使用5倍交叉验证来调整12种机器学习算法的模型参数。然后,我们使用5倍交叉验证的调优参数来确定测试组或拒绝组中每个入院患者的谵妄状态。

结果 概述

我们在holdout测试集上测试模型性能,并计算6个评价指标来找到最佳模型,即accuracy, precision, recall或sensitivity, F1-评分、特异性和受试者工作特征曲线下面积(ROC-AUC)。

准确性回答了我们在所有录取中正确标注了多少录取的问题。

精确性回答了一个问题,即我们预测有谵妄的人中有多少人真的患有谵妄。

敏感性代表被正确标记为患有谵妄的谵妄患者的比例。

F1-得分是精密度或回忆的加权平均值,其中 F1-score在1时达到最佳值,在0时达到最差值。

特异性回答了有多少阴性病例(即没有谵妄的人)被正确预测的问题。

ROC曲线使用不同阈值设置下的真阳性率和假阳性率进行绘制。计算出的ROC-AUC表明,我们的二元分类器对随机选择的正实例的排名高于随机选择的负实例的概率(假设“正”的排名高于“负”)。

12种机器学习算法,以及超参数调优和交叉验证,都在Python包中实现 Scikit-learn 60].超参数调优使用 RandomizedSearchCV而且 GridSearchCV功能。交叉验证通过 cross_val_score cross_validate,而且 cross_val_predict功能。

梯度增强分类器使用 GradientBoostingClassifier函数。AdaBoost分类器使用 AdaBoostClassifier函数。神经网络分类器的实现采用 MLPClassifier函数。决策树分类器采用 DecisionTreeClassifier函数。k -最近邻分类训练使用 KNeighborsClassifier函数。逻辑回归分类器使用 LogisticRegression函数。随机森林分类器采用 RandomForest分类器函数。SVM方法使用了 支持向量机函数。高斯朴素贝叶斯方法实现了 GaussianNB函数。线性判别分析分类器的训练采用 LinearDiscriminantAnalysis函数。二次判别分析分类器采用 QuadraticDiscriminantAnalysis函数。带有软设置的投票分类器使用 分类器投票函数。

实验结果

我们使用超参数调优和前9个时间段的5倍交叉验证来训练这些模型。我们展示了3个表现最好的模型的结果 表2,其余9个模型的计算结果载于 多媒体附件1.在这两个表中,我们报告了前9个时间段数据的平均性能超过5倍。

然后我们测试了我们的谵妄识别(感性或+NLP)模型,该模型将NLP纳入了训练过程。我们将+NLP模型的结果与经过训练的无NLP (-NLP)谵妄识别模型的结果进行了比较,该模型基于GEMINI数据集中最近6个月的数据。在过去6个月的数据中,3个表现最好的模型在预测谵妄标签方面的表现显示在 表3.中其他9个模型的结果也有类似的表述 多媒体附件2.值得注意的是,我们在测试数据上使用了来自训练数据的最佳表现模型的调优参数。

3种性能最佳算法的模型比较:训练集(2010年4月1日至2014年9月30日)上使用5倍交叉验证的平均训练结果。

模型 梯度提升分级机 演算法分类器 随机森林
精度
谵妄(+ NLP一个 0.868b 0.866 0.826
谵妄(nlp) 0.797 0.795 0.768
精度
谵妄(+ NLP) 0.78 0.794 0.833
谵妄(nlp) 0.747 0.75 0.8
回忆
谵妄(+ NLP) 0.678 0.649 0.398
谵妄(nlp) 0.341 0.329 0.141
特异性
谵妄(+ NLP) 0.935 0.942 0.975
谵妄(nlp) 0.957 0.958 0.988
ROC-AUCc
谵妄(+ NLP) 0.91 0.895 0.897
谵妄(nlp) 0.83 0.834 0.83
F 1分数
谵妄(+ NLP) 0.722 0.712 0.529
谵妄(nlp) 0.463 0.452 0.239

一个NLP:自然语言处理。

b最高性能值用斜体表示。

cROC-AUC:接收机工作特性曲线下面积。

3种性能最佳算法中3种模型的比较:模型在抵抗集10上的表现(2014年10月1日- 2015年3月31日)。

模型 梯度提升分级机 演算法分类器 随机森林
精度
谵妄(+ NLP一个 0.853b 0.835 0.835
谵妄(nlp) 0.807 0.811 0.776
精度
谵妄(+ NLP) 0.742 0.725 0.866
谵妄(nlp) 0.74 0.747 0.806
回忆
谵妄(+ NLP) 0.669 0.594 0.436
谵妄(nlp) 0.406 0.421 0.188
特异性
谵妄(+ NLP) 0.918 0.92 0.976
谵妄(nlp) 0.949 0.949 0.984
ROC-AUCc
谵妄(+ NLP) 0.922 0.917 0.93
谵妄(nlp) 0.848 0.849 0.869
F 1分数
谵妄(+ NLP) 0.704 0.653 0.58
谵妄(nlp) 0.524 0.538 0.305

一个NLP:自然语言处理。

b最高性能值用斜体表示。

cROC-AUC:接收机工作特性曲线下面积。

在训练集中,我们提出的谵妄(+NLP)模型在准确性、精密度、回忆或敏感性、率、ROC-AUC和 F1-评分,而谵妄(-NLP)模型产生最好的特异性。在测试集中,谵妄(+NLP)和谵妄(-NLP)模型的表现延续了相同的趋势。

请注意, F1-score是灵敏度和精度的平衡,ROC-AUC是由灵敏度和特异性产生的,因此我们的谵妄(+NLP)模型在平衡灵敏度、精度和特异性方面表现最好。在谵妄等急性疾病中,敏感性尤其重要,因为未能识别疾病(漏诊)的成本高于虚假警报的成本。因此,目前的结果表明,感性(vs非感性)谵妄识别模型应该在临床实践中更有用。

我们还跨时间测试了+NLP和-NLP模型,在使用最近的时间段作为坚持集之前,在9个时间段中每次移动一个坚持集。因此,将每个时间段作为测试集,而将其他9个时间段作为滚动的训练集,如图所示 图1.对应的训练数据和独立坚持或测试数据的数据分布在 表4 表5而且 6在数据分割中,呈现队列患者特征的数据分布。

图2显示了表现最好的机器学习算法的识别结果,即跨10个时间段的梯度增强。图中的8个面板表示使用的8个评估指标。

请注意,在8个面板中的每个面板中显示了2个不同的行 图2表示2种不同类型模型(即Delirium [+NLP]和Delirium [-NLP])的相应评估指标的结果。每一行中的10个数据点显示了性能如何随着坚持时间段的时间变化而变化。总体而言,情感(+NLP)模型的识别性能优于非情感(-NLP)模型。此外,情感(+NLP)模型的性能在不同的时间段比其他方案更趋于稳定。也可以看出,精度,召回,和 F1随着时间的推移,-评分往往比其他3项指标更不稳定,即使这些性能指标在谵妄(+NLP)模型中保持相对稳定。

图3提出了梯度增压模型的校准,发现提供了最佳的整体性能。

各时间段(TS)训练集和拒绝集的数据分布。注意,阳性入院表明患者在入院时被诊断为谵妄,而阴性入院则不是。

在滚动的基础上设定不同的TS 训练集 抵抗组
入学人数 否定录取人数 积极录取人数 入学人数 否定录取人数 积极录取人数
壹空间 3541 2635 906 321 233 88
TS2 3531 2627 904 331 241 90
TS3 3494 2581 913 368 287 81
TS4 3488 2596 892 374 272 102
TS5 3526 2620 906 336 248 88
TS6 3479 2585 894 383 283 One hundred.
TS7 3446 2560 886 416 308 108
TS8 3476 2580 896 386 288 98
TS9 3424 2536 888 438 332 106
TS10 3353 2492 861 509 376 133

在训练和测试数据集的10个时间段(TSs)中,患者年龄和性别的特征数据信息。定义了三个成人年龄组:18-44岁的年轻人,45-64岁的中年人,以及≥65岁的老年人。

TS 性别 年龄
培训 测试 培训 测试
男性,n (%) 女性,n (%) 男性,n (%) 女性,n (%) 青年,n (%) 中年人,n (%) 老年人,n (%) 青年,n (%) 中年人,n (%) 老年人,n (%)
TS1(训练:n=3541;测试:n = 321) 1753 (49.51) 1788 (50.49) 162 (50.5) 159 (49.5) 430 (12.14) 844 (23.84) 2267 (64.02) 36 (11.2) 81 (25.2) 204 (63.5)
TS2(训练:n=3531;测试:n = 331) 1736 (49.16) 1795 (50.84) 179 (54.1) 152 (45.9) 421 (11.92) 845 (23.93) 2265 (64.15) 45 (13.6) 80 (24.2) 206 (62.2)
TS3(训练:n=3494;测试:n = 368) 1746 (49.97) 1748 (50.03) 169 (45.9) 199 (54.1) 417 (11.93) 845 (24.18) 2232 (63.88) 49 (13.3) 80 (21.7) 239 (64.9)
TS4(训练:n=3488;测试:n = 374) 1737 (49.8) 1751 (50.2) 178 (47.6) 196 (52.4) 415 (11.9) 854 (24.48) 2219 (63.62) 51 (13.6) 71 (18.9) 252 (67.4)
TS5(训练:n=3526;测试:n = 336) 1748 (49.57) 1778 (50.43) 167 (49.7) 169 (50.3) 423 (12) 838 (23.77) 2265 (64.24) 43 (12.8) 87 (25.9) 206 (61.3)
TS6(训练:n=3479;测试:n = 383) 1728 (49.67) 1751 (50.33) 187 (48.8) 196 (51.2) 417 (11.99) 832 (23.91) 2230 (64.1) 49 (12.8) 93 (24.3) 241 (62.9)
TS7(训练:n=3446;测试:n = 416) 1700 (49.33) 1746 (50.67) 215 (51.7) 201 (48.3) 415 (12.04) 833 (24.17) 2198 (63.78) 51 (12.3) 92 (22.1) 273 (65.6)
TS8(训练:n=3476;测试:n = 386) 1724 (49.6) 1752 (50.4) 191 (49.5) 195 (50.5) 423 (12.17) 826 (23.76) 2227 (64.07) 43 (11.14) 99 (25.65) 244 (63.21)
TS9(训练:n=3424;测试:n = 428) 1702 (49.71) 1722 (50.29) 213 (48.6) 225 (51.34) 409 (11.95) 817 (23.86) 2198 (64.19) 57 (13.01) 108 (24.66) 273 (62.33)
TS10(训练:n=3353;测试:n = 509) 1661 (49.54) 1692 (50.46) 254 (49.9) 255 (50.1) 424 (12.65) 791 (23.59) 2138 (63.76) 42 (8.25) 134 (26.33) 333 (65.42)

跨数据分割的队列特殊护理单元(SCU)患者特征的数据信息。

TS一个 培训 测试
在SCU文件中n (%) 不在SCU文件中,n (%) 在SCU文件中n (%) 不在SCU文件中,n (%)
TS1(训练:n=3541;测试:n = 321) 291 (8.22) 3250 (91.78) 27日(8.4) 294 (91.6)
TS2(训练:n=3531;测试:n = 331) 292 (8.27) 3239 (91.73) 26日(7.8) 305 (92.1)
TS3(训练:n=3494;测试:n = 368) 289 (8.27) 3205 (91.73) 29 (7.9) 339 (92.1)
TS4(训练:n=3488;测试:n = 374) 285 (8.17) 3203 (91.83) 33 (8.8) 341 (91.2)
TS5(训练:n=3526;测试:n = 336) 290 (8.22) 3236 (91.78) 28日(8.3) 308 (91.7)
TS6(训练:n=3479;测试:n = 383) 282 (8.11) 3197 (91.89) 36 (9.4) 347 (90.6)
TS7(训练:n=3446;测试:n = 416) 286 (8.3) 3160 (91.7) 32 (7.7) 384 (92.3)
TS8(训练:n=3476;测试:n = 386) 282 (8.11) 3194 (91.89) 36 (9.3) 350 (90.7)
TS9(训练:n=3424;测试:n = 428) 282 (8.24) 3142 (91.76) 36 (8.2) 402 (91.8)
TS10(训练:n=3353;测试:n = 509) 283 (8.44) 3070 (91.56) 35 (6.9) 474 (93.1)

一个TS:时间段。

利用梯度增强分类器显示了两种方案在10个时间段内的性能变化,其中TS1 ~ TS10为:2010年4月1日~ 2010年9月30日;2010年10月1日至2011年3月31日;2011年4月1日至2011年9月30日;2011年10月1日至2012年3月31日;2012年4月1日至2012年9月30日;2012年10月31日至2013年3月31日;2013年4月1日至2013年9月30日;2013年10月1日至2014年3月31日;2014年4月1日至2014年9月30日;2014年10月1日至2015年3月31日。 NLP: natural language processing; ROC-AUC: area under the receiver operating characteristic curve.

梯度增强分类器的标定图。

与最后6个月时间段的结果一样,谵妄(+NLP)模型使用前9个时间段的数据作为坚持集也表现最佳。谵妄(+NLP)模型优于谵妄(-NLP)模型在准确性、精密度、回忆或敏感性、漏报率、ROC-AUC和 F1分数。

讨论 主要研究结果

总的来说,在预测谵妄的存在方面,包含NLP的机器学习模型要么表现得更好,要么与不包含NLP的模型竞争。谵妄(+NLP)模型的表现在特异性指标上相对较弱,但该指标在不同的坚持集上变化很大,这表明它是一种不太可靠的性能指标。如回忆测量所示,谵妄(+NLP)模型更善于发现真阳性,即对入院者或有真实谵妄标签的患者识别谵妄。谵妄(+NLP)模型在4个方案中表现最好,在灵敏度方面具有持续的高性能, F1-score(平衡灵敏度和精度),ROC-AUC。

先前的谵妄风险识别模型倾向于使用一套有限的机器学习方法[ 7 29- 33],并倾向于忽略文本数据[ 34].此外,大多数用于识别谵妄的机器学习识别模型仅通过简单的数据划分(分别随机划分80%/20%用于训练和验证分类模型)或交叉验证进行评估[ 30. 32 33].相比之下,我们使用独立的保留数据或测试数据(训练数据中的交叉验证和滚动基础上在时间段内完全独立的测试数据,如图所示 图1),为识别模型提供更严格的测试。

先前的研究发现,与研究的临床评估相比,使用CAM等工具的常规临床筛查少报了高达75%的谵妄病例[ 61- 64].虽然我们无法直接比较我们的模型与CAM结果在相同患者中的表现,但文献中有充分的记录表明,常规临床使用CAM对于研究或质量测量是不可靠的,这加强了对我们在本研究中开发的模型的需求。值得注意的是,蒙特利尔认知评估主要用于评估稳定的认知障碍,而不是谵妄。

谵妄(+NLP)模型提供了识别谵妄病例之间的最佳平衡,在他们存在的地方,而不是错误地将非谵妄病例标记为谵妄。基线谵妄方案在检测真阴性时表现更好。这可能是因为我们的GEMINI数据集不平衡,75%的入院患者为非谵妄;因此,一个差调的模型可以通过偏向于预测非谵妄获得更好的准确性。

处理精度和召回率之间权衡的一种方法是使用 F1-得分,是精密度和灵敏度或召回得分的调和平均值(平均值)。有了这个更平衡的测量,我们提出的谵妄(+NLP)模型在所有时间段都优于没有NLP的模型。

我们的谵妄(+NLP)方法将NLP派生的特征集成到多源医疗数据中,以提高模型的性能和有用性。这种方法也可以扩展到其他医疗识别环境。

这种方法有几个重要的应用,包括质量测量和质量改进,研究项目中的统计风险调整,以及回顾性队列中的大规模观察研究。目前还没有可扩展的解决方案来回顾性地识别医院中谵妄的发生,CAM没有得到充分利用,可能是因为缺乏训练有素的临床资源。我们一致认为,谵妄的前瞻性预测在临床上是有用的,关于这一主题的研究正在进行中。然而,回顾性预测对于质量管理目的和评估预防谵妄的干预措施的有效性也很重要。通常,CAM的实现很差,使用也很少[ 23].

谵妄在常规数据源中未被识别的一个主要原因是它的记录经常不一致,使用了各种同义词(例如,混乱和意识水平的改变)。唯一经过验证的、高质量的回顾性识别谵妄的方法是基于图表的谵妄识别仪器复查方法,我们将其作为训练机器学习模型的金标准标记方法。这种方法是时间密集型的,每张医院图表需要1个小时。因此,它不容易应用于大型数据集。因此,开发可以使用常规收集的临床和行政卫生保健数据的模型代表了对文献的重大贡献,因为它们可以使依赖于谵妄病例回顾性识别的研究和高质量应用成为可能。

建立能够在住院时或住院期间实时预测谵妄风险的模型是可取的。开发这些模型的一个障碍是有足够大的数据集来训练它们。我们的模型试图对有谵妄或没有谵妄的住院进行回顾性准确分类,然后可以用于标记(使用模型预测)大型数据集,然后可以用于生成质量估计,并为进一步的模型预测提供基础。

结论

谵妄是一种非常普遍、可预防和可治疗的神经认知障碍,如果不治疗,其预后非常差。它的特点是急性发作的精神状态波动、精神运动障碍和幻觉,而且很难发现,因为症状通常可以归因于其他原因。通过谵妄或谵妄风险的自动识别,更好的谵妄预测将为更高质量的护理创造机会。在本文报道的研究中,我们已经证明,与没有NLP的标准机器学习方法相比,NLP方法的结合可以显著提高识别能力。我们还表明,随着时间的推移,改变坚持期可以估计模型识别的时间稳定性。这种类型的平稳性分析的另一个有用的特征是,它可以用来确定表现出非平稳性的不可靠评估标准,并确定就其有效性随时间的变化而言非平稳性的模型。在这项研究中,我们发现精度是一个不可靠的标准,在不同时期有很大的波动。

本研究的结果证明了NLP在识别重要的医疗结果方面的价值,我们建议未来的研究应集中在(1)将NLP应用于医疗记录以提取更多有价值的信息;(2)通过添加解释来增强谵妄(+NLP)模型,使所得到的模型更具消耗性,更容易集成到临床工作流程中。

神经网络、决策树、逻辑回归、线性支持向量机、高斯朴素贝叶斯、线性判别分析、二次判别分析、投票分类器等9种算法在训练集(2010年4月1日至2014年9月30日)上使用5倍交叉验证的模型与平均训练结果的比较。

3种模型在其他9种算法中的比较:模型在抵抗集10上的表现(2014年10月1日- 2015年3月31日)。

缩写 凸轮

混淆评估方法

CCS

临床分类软件

双子座

全科医学住院病人倡议

icd -

《国际疾病分类》第十版

NLP

自然语言处理

犹太人的尊称

研究伦理委员会

ROC-AUC

接收机工作特性曲线下面积

支持向量机

支持向量机

作者要感谢加拿大健康研究基金会和国家科学与工程研究委员会通过合作健康研究项目赠款(申请号415033)资助这项工作。

没有宣布。

Maldonado 急性脑衰竭:精神错乱的病理生理学、诊断、处理和后遗症 危重护理诊所 2017 07 33 3. 461 519 10.1016 / j.ccc.2017.03.013 28601132 s0749 - 0704 (17) 30025 - 8 JH 威尔逊 一个 伊利 电子战 老年急诊科病人的谵妄:一种无声的流行病 急诊医学诊所 2010 08 28 3. 611 31 10.1016 / j.emc.2010.03.005 20709246 s0733 - 8627 (10) 00034 - 9 PMC3708798 Maldonado 谵妄病理生理学:急性脑衰竭病因学的最新假说 老年精神病学杂志 2018 11 33 11 1428 57 10.1002 / gps.4823 29278283 AA Masoom H 拉瓦尔大声回答 年代 Y •拉扎克 F 双子座的调查人员 晕厥住院患者的肺栓塞和深静脉血栓形成:加拿大安大略省多伦多的多中心横断面研究 美国医学会实习生 2017 07 01 177 7 1046 8 10.1001 / jamainternmed.2017.1246 28492876 2626191 PMC5818812 康涅狄格州 DK 吉布森 康涅狄格州 DK 赫曼 N 一个 Rewilak D Schogt B 心理健康问题评估和治疗指南 长期护理院的实用精神病学:工作人员手册。第三修订和扩展版 2007 德国哥廷根 Hogrefe和Huber出版社 267 78 l 霍根 DB 2014 CCSMH指南更新:谵妄的评估和治疗 加拿大老年人心理健康联盟 2014 2022-12-07 加拿大多伦多 加拿大老年人心理健康联盟 https://ccsmh.ca/wp-content/uploads/2016/03/2014-ccsmh-Guideline-Update-Delirium.pdf K 曾荫权 一个 B 施瓦兹 R 安大略高级友好医院战略:谵妄和功能下降指标-高级友好医院指标工作组的报告 安大略省地方卫生综合网络 2012 11 2022-12-07 https://www.rgptoronto.ca/wp-content/uploads/2017/12/SFH_Delirium_and_Functional_Decline_Indicators.pdf 澳大利亚卫生保健安全和质量委员会 2012 2022-12-07 https://www.safetyandquality.gov.au/ 布莱巴特 W 吉布森 C 加拿大 一个 谵妄经历:住院癌症患者、其配偶/护理人员和护士的谵妄回忆和谵妄相关的痛苦 心身医学 2002 43 3. 183 94 10.1176 / appi.psy.43.3.183 12075033 s0033 - 3182 (02) 70403 - 9 Bruera E 布什 上海 开松机 J Paraskevopoulos T Z 帕尔默 莱托 科恩 MZ Sivesind D Elsayem 一个 谵妄和回忆对晚期癌症患者及其家庭照顾者痛苦水平的影响 癌症 2009 05 01 115 9 2004 12 10.1002 / cncr.24215 19241420 PMC2752862 Inouye SK 老年人谵妄 N英语J医学 2006 03 16 354 11 1157 65 10.1056 / NEJMra052321 16540616 354/11/1157 McCusker J 科尔 Abrahamowicz Primeau F Belzile E 谵妄症预测12个月的死亡率 Arch实习医生 2002 02 25 162 4 457 63 10.1001 / archinte.162.4.457 11863480 ioi01007 Salluh H 施耐德 海尔哥哥 Nagaraja N Yenokyan G Damluji 一个 Serafim RB 史蒂文斯 理查德·道金斯 危重病人谵妄的结局:系统回顾和荟萃分析 BMJ 2015 06 03 350 h2538 10.1136 / bmj.h2538 26041151 PMC4454920 Yaffe K 韦斯顿 一个 Graff-Radford NR Satterfield 年代 Simonsick 新兴市场 Younkin SG Younkin l Ayonayon 接下来的 J 哈里斯 结核病 血浆β -淀粉样蛋白水平和认知储备与随后认知能力下降的关系 《美国医学会杂志》 2011 01 19 305 3. 261 6 10.1001 / jama.2010.1995 21245181 305/3/261 PMC3108075 MacLullich Beaglehole 一个 大厅 RJ 米格尔 DJ 谵妄和长期认知障碍 国际精神病学 2009 02 21 1 30. 42 10.1080 / 09540260802675031 19219711 908707924 TG 戴维斯 D Growdon 阿尔伯克基 一个 Inouye SK 老年人谵妄和痴呆之间的界面 柳叶刀神经 2015 08 14 8 823 32 10.1016 / s1474 - 4422 (15) 00101 - 5 26139023 s1474 - 4422 (15) 00101 - 5 PMC4535349 罗克伍德 K Cosway 年代 卡佛 D Jarrett P Stadnyk K Fisk J 精神错乱后痴呆和死亡的风险 年龄老化 1999 10 28 6 551 6 10.1093 /老化/ 28.6.551 10604507 莱斯利 戴斯。莱纳姆: •莱 Y Leo-Summers l Inouye SK 老年人群谵妄相关的一年医疗费用 Arch实习医生 2008 01 14 168 1 27 32 10.1001 / archinternmed.2007.4 18195192 168/1/27 PMC4559525 Hshieh TT T Gartaganis SL J Inouye SK 医院老年生活计划:有效性的系统回顾和meta分析 是J老年精神病学吗 2018 10 26 10 1015 33 10.1016 / j.jagp.2018.06.007 30076080 s1064 - 7481 (18) 30373 - 7 PMC6362826 Inouye SK Bogardus小 贝纳 巴勒斯坦权力机构 Leo-Summers l Acampora D 胡佛 TR 接受姑息疗法 LM 预防住院老年患者谵妄的多成分干预 N英语J医学 1999 03 04 340 9 669 76 10.1056 / NEJM199903043400901 10053175 Teodorczuk 一个 Reynish E Milisen K 在临床实践中提高谵妄的认识:行动的呼吁 BMC Geriatr 2012 09 14 12 55 10.1186 / 1471-2318-12-55 22974329 1471-2318-12-55 PMC3463439 刘易斯 LM 米勒 DK 莫理 奶子 乔丹 拉萨特 信用证 ED老年患者不明谵妄 是急诊医生吗 1995 03 13 2 142 5 10.1016 / 0735 - 6757 (95) 90080 - 2 7893295 0735 - 6757 (95) 90080 - 2 霍根 TM Olade 卡彭特 CR 老龄化美国的急性护理概况:2013年美国老年急诊科的雪球样本识别和特征 新兴医学学院 2014 03 21 3. 337 46 10.1111 / acem.12332 24628759 真正的小 TH 鲷鱼 l 斯特恩 助教 玻璃市 RH 全州索赔数据中谵妄的漏报:对临床护理和预测模型的影响 心身医学 2016 57 5 480 8 10.1016 / j.psym.2016.06.001 27480944 s0033 - 3182 (16) 30056 - 1 Lindroth H Bratzke l 普维斯 年代 棕色(的) R 科伯恩 Mrkobrada 戴维斯 DH Pandharipande P 厘米 桑德斯 理查德·道金斯 老年住院患者谵妄预测模型的系统回顾 BMJ开放 2018 04 28 8 4 e019223 10.1136 / bmjopen - 2017 - 019223 29705752 bmjopen - 2017 - 019223 PMC5931306 Pendlebury 洛薇特 NG 史密斯 SC 沃顿商学院 R 罗斯韦尔 急性内科连续非选择入院患者谵妄风险分层:基于外部汇集数据中确定的因素验证敏感性评分,用于进入急性护理路径 年龄老化 2017 03 01 46 2 226 31 10.1093 /老化/ afw198 27816908 afw198 PMC5386005 鲁道夫 莱托 多尔蒂 K 凯利 B 司机 晶澳 Archambault E 使用电子病历信息进行谵妄风险评估的验证 J Am医学主任协会 2016 03 01 17 3. 244 8 10.1016 / j.jamda.2015.10.020 26705000 s1525 - 8610 (15) 00671 - 4 鲁道夫 莱托 哈林顿 MB Lucatorto 切斯特 弗朗西斯 J KJ 退伍军人事务和谵妄工作小组 基于病历的谵妄风险评估的验证 美国老年医学会 2011 11 59补充2 增刊2 S289 94 10.1111 / j.1532-5415.2011.03677.x 22091575 PMC4880478 内勒 CD 关于(深度)学习医疗保健系统的前景 《美国医学会杂志》 2018 09 18 320 11 1099 One hundred. 10.1001 / jama.2018.11103 30178068 2701667 偷懒 年代 克莱默 D Groß奥尔 B Rienmuller 年代 禽流感 一个 Berghold 一个 Leodolter W 舒尔茨 年代 使用机器学习预测住院患者谵妄的风险:一项实施和前瞻性评估研究 美国医学信息协会 2020 07 01 27 9 1383 92 10.1093 /地点/ ocaa113 32968811 5910737 PMC7647341 Buenviaje B 比绍夫 Roncace 类风湿性关节炎 威利 CJ 马氏-田口系统鉴别ICU谵妄的前兆指标 IEEE生物医学健康信息 2016 07 20. 4 1205 12 10.1109 / JBHI.2015.2434949 26011872 使得科拉迪 摩根大通 汤普森 年代 马瑟 摩根富林明 Waszynski 厘米 迪克斯 RS 使用随机森林分类器预测事件谵妄 J医学系统 2018 11 14 42 12 261 10.1007 / s10916 - 018 - 1109 - 0 30430256 10.1007 / s10916 - 018 - 1109 - 0 J D 公园 J Na 上海 J Heo J 胫骨 CS JJ 公园 司法院 B 利用心率变异性和机器学习在重症监护病房预测和早期发现谵妄 杂志量 2018 03 27 39 3. 035004 10.1088 / 1361 - 6579 / aaab07 29376502 Hercus C Hudaib 基于“增大化现实”技术 精神病学中的谵妄误诊风险:机器学习-逻辑回归预测算法 BMC运行状况服务决议 2020 02 27 20. 1 151 10.1186 / s12913 - 020 - 5005 - 1 32106845 10.1186 / s12913 - 020 - 5005 - 1 PMC7045404 Raghupathi W Raghupathi V 医疗保健领域的大数据分析:前景和潜力 健康科学系统 2014 2 3. 10.1186 / 2047-2501-2-3 25825667 14 PMC4341817 托波尔 EJ 高性能医学:人与人工智能的融合 Nat地中海 2019 01 25 1 44 56 10.1038 / s41591 - 018 - 0300 - 7 30617339 10.1038 / s41591 - 018 - 0300 - 7 辛顿 G 深度学习——一项有可能改变医疗保健的技术 《美国医学会杂志》 2018 09 18 320 11 1101 2 10.1001 / jama.2018.11100 30178065 2701666 赛义德 代替 C Raber G 马克 RG MIMIC II:一个大型临时ICU患者数据库,支持智能患者监测的研究 第一版心功能杂志 2002 29 641 4 14686455 洛佩尔 E 年代 Nltk:自然语言工具包 arXiv 2002 5 17 10.3115/1118108.1118117 Ridgway 摩根大通 Uvin 一个 施密特 J Oliwa T Almirol E Devlin 年代 施耐德 J 临床记录的自然语言处理,以确定艾滋病毒感染者中的精神疾病和药物使用:回顾性队列研究 JMIR Med Inform 2021 03 10 9 3. e23456 10.2196/23456 33688848 v9i3e23456 PMC7991991 H 霍奇森 K 戴森 年代 莫理 KI 易卜拉欣 ZM评选 伊克巴尔 E 斯图尔特 R 多布森 RJ Sudlow C 自由文本电子病历中表型提及识别的自然语言处理模型的高效重用:一种表型嵌入方法 JMIR Med Inform 2019 12 17 7 4 e14782 10.2196/14782 31845899 v7i4e14782 PMC6938594 W X T Z Z 香港 Z l 基于模型的中西医结合临床诊断推理:电子病历和自然语言处理方法的真实世界方法学研究 JMIR Med Inform 2020 12 21 8 12 e23082 10.2196/23082 33346740 v8i12e23082 PMC7781803 Nakatani H 地震区 中山教授 H Toyoshiba H C 利用日本电子病历护理记录的自然语言处理预测住院患者跌倒:病例对照研究 JMIR Med Inform 2020 04 22 8 4 e16970 10.2196/16970 32319959 v8i4e16970 PMC7203618 l Y 年代 胫骨 B 非政府组织 广告 Jackson-Browne 女士 樵夫 DJ T K X C D Y G YM McElhinney DB 斑鸠 DS 阿尔佛雷德 斯登 F 西尔维斯特 公斤 扩大 E XB 基于web的糖尿病患者人群健康管理的实时病例发现:基于自然语言处理的算法与全州电子病历的前瞻性验证 JMIR Med Inform 2016 11 11 4 4 e37 10.2196 / medinform.6328 27836816 v4i4e37 PMC5124114 Sheikhalishahi 年代 Miotto R 达德利 JT Lavelli 一个 里纳尔蒂 F V 慢性疾病临床病历的自然语言处理:系统综述 JMIR Med Inform 2019 04 27 7 2 e12239 10.2196/12239 31066697 v7i2e12239 PMC6528438 KP T Savova 门将 墨菲 SN 卡尔森 电子战 Ananthakrishnan 一个 获得者 VS SY Z 医学信息学 P 丘吉尔 年代 小羽 利用电子病历并结合自然语言处理开发表型算法 BMJ 2015 04 24 350 h1885 10.1136 / bmj.h1885 25911572 PMC4707569 Y J 年代 H 胫骨 B R X l l Y C Z C Y Y Y D 斑鸠 DS 阿尔佛雷德 托德 R 斯登 F 西尔维斯特 公斤 扩大 E XB 基于NLP的充血性心力衰竭病例发现:全州电子病历的前瞻性分析 国际医学杂志 2015 12 84 12 1039 47 10.1016 / j.ijmedinf.2015.06.007 26254876 s1386 - 5056 (15) 30013 - 7 Devika 医学博士 Sunitha C Ganesh 一个 情感分析:不同方法的比较研究 程序计算科学 2016 87 44 9 10.1016 / j.procs.2016.05.124 AA Y 关颖珊 莱托 Lapointe-Shaw l 拉瓦尔大声回答 年代 T Weinerman 一个 •拉扎克 F 住院全科内科患者出院诊断的患病率和费用:一项多中心横断面研究 J Gen实习生 2018 11 33 11 1899 904 10.1007 / s11606 - 018 - 4591 - 7 30054888 10.1007 / s11606 - 018 - 4591 - 7 PMC6206337 AA Pasricha SV 荣格 沪元 Kushnir V DY Koppula R Y 关颖珊 莱托 Lapointe-Shaw l 拉瓦尔大声回答 年代 T Weinerman 一个 •拉扎克 F 评估从医院提取的临床和行政数据的质量:全科医学住院病人计划(GEMINI)的经验 美国医学信息协会 2021 03 01 28 3. 578 87 10.1093 /地点/ ocaa225 33164061 5961438 PMC7936532 l Chignell Y 平托 一个 •拉扎克 F 希恩 K 一个 医师体验设计(PXD):更可用的机器学习预测临床决策 AMIA年度诉讼程序 2022 5 23 2022 476 85 35854747 2111 PMC9285165 AA Y 关颖珊 莱托 Lapointe-Shaw l 拉瓦尔大声回答 年代 T Weinerman 一个 补习 P Dhalla IA 西南 Laupacis 一个 Mamdani 毫米 Shadowitz 年代 厄普舒尔 R 里德 RJ •拉扎克 F 与全科内科住院护理相关的患者特征、资源使用和结果:全科住院患者计划(GEMINI)回顾性队列研究 协会开放 2017 12 11 5 4 E842 9 10.9778 / cmajo.20170097 29237706 5/4 / E842 PMC5741428 格里夫斯 F Ramirez-Cano D 米勒特 C Darzi 一个 唐纳森 l 使用情绪分析从网上发布的自由文本评论中捕捉患者经验 J医疗互联网服务 2013 11 01 15 11 e239 10.2196 / jmir.2721 24184993 v15i11e239 PMC3841376 Inouye SK Leo-Summers l Y Bogardus 莱斯利 戴斯。莱纳姆: Agostini 合资企业 一种基于图表的鉴别谵妄的方法:验证与使用混淆评估方法的采访者评分比较 美国老年医学会 2005 02 53 2 312 8 10.1111 / j.1532-5415.2005.53120.x 15673358 JGS53120 彼得森 CL 缰绳 R 科孜 D 勒布 l 烹饪 年代 皮金 D 克里斯坦森 公元前 Batsis 晶澳 使用自然语言处理和情感分析来增强传统的以用户为中心的设计:开发和可用性研究 JMIR Mhealth Uhealth 2020 08 07 8 8 e16862 10.2196/16862 32540843 v8i8e16862 PMC7442942 H B Couris 厘米 故事 K 格雷厄姆 P 隐藏者 P Januel JM Sundararajan V 使用来自6个国家的数据更新和验证出院摘要中Charlson共病指数和风险调整评分 Am J流行病 2011 03 15 173 6 676 82 10.1093 / aje / kwq433 21330339 kwq433 Escobar GJ 格林 JD Scheirer P 加德纳 德雷伯 D Kipnis P 使用自动住院、门诊和实验室数据库调整医院住院患者死亡率的风险 医疗保健 2008 03 46 3. 232 9 10.1097 / MLR.0b013e3181589bb6 18388836 00005650-200803000-00002 在哈 一个 急性肾损伤KDIGO临床实践指南 肾元临床实践 2012 120 4 c179 84 10.1159 / 000339789 22890468 000339789 布拉德 乔丹 T Brayman C 沃伦 D 马斯格雷夫 E 昂格尔 B cta国家工作组成员 修订了加拿大急诊科分诊和敏锐度量表(CTAS)指南 CJEM 2014 11 16 6 485 9 25358280 Pedregosa F Varoquaux G Gramfort 一个 米歇尔 V 蒂里翁 B Grisel O 他们批判 Prettenhofer P 维斯 R Dubourg V Vanderplas J 斯帕索斯 一个 Cournapeau D 布鲁赫 Perrot Duchesnay E Scikit-learn: Python中的机器学习 J Mach Learn Res 2011 12 2825 30. Loftus CA Wiesenfeld 老年谵妄护理:使用图表审计目标改善策略 Geriatr J 2017 12 20. 4 246 52 10.5770 / cgj.20.276 29296131 cgj - 20 - 246 PMC5740948 索伯格 LM 普卢默 CE 五月 KN Mion 信用证 一个质量改进计划,以增加护士在急症医疗单位谵妄的检测 Geriatr孕育 2013 34 1 75 9 10.1016 / j.gerinurse.2012.12.009 23614146 s0197 - 4572 (12) 00411 - 9 PMC4452943 大米 吉隆坡 班尼特 戈麦斯 Theall KP 骑士 工头 医学博士 护士对住院老年人谵妄的认识 临床护士规格 2011 25 6 299 311 10.1097 / NUR.0b013e318234897b 22016018 00002800-201111000-00010 Lemiengre J Nelis T Joosten E 胸罩 T 工头 Gastmans C Milisen K 床边护士使用混淆评估法检测谵妄 美国老年医学会 2006 04 54 4 685 9 10.1111 / j.1532-5415.2006.00667.x 16686883 JGS667
Baidu
map